Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ set y, hypo. 03. 1 ⊢ set {x}, set_sg 1. 04. 1 ⊢ set {{x}}, set_sg 3. 05. 1, 2 ⊢ set {x, y}, pairing 1 2. 06. 1, 2 ⊢ set {{x, y}}, set_sg 5. 07. 1, 2 ⊢ set {{x}, {x, y}}, set_union 4 6. 08. 1, 2 ⊢ set (x, y), eq_subst_rev pair_eq 7, P u ↔ set u. set_pair. ⊢ set x → set y → set (x, y), subj_intro_ii 8.
Dependencies
The given proof depends on six axioms:
comp, eq_refl, eq_subst, ext, pairing, union.