Proof 01. 1 ⊢ inj f X Y, hypo. 02. 2 ⊢ inj g Y Z, hypo. 03. 1 ⊢ map f X Y, inj_is_map 1. 04. 2 ⊢ map g Y Z, inj_is_map 2. 05. 1, 2 ⊢ map (g ∘ f) X Z, composition_is_map 3 4. 06. 6 ⊢ a ∈ X, hypo. 07. 7 ⊢ b ∈ X, hypo. 08. 8 ⊢ app (g ∘ f) a = app (g ∘ f) b, hypo. 09. 1, 2, 6 ⊢ app (g ∘ f) a = app g (app f a), map_app_composition 3 4 6. 10. 1, 2, 7 ⊢ app (g ∘ f) b = app g (app f b), map_app_composition 3 4 7. 11. 1, 2, 6 ⊢ app g (app f a) = app (g ∘ f) a, eq_symm 9. 12. 1, 2, 6, 8 ⊢ app g (app f a) = app (g ∘ f) b, eq_trans 11 8. 13. 1, 2, 6, 7, 8 ⊢ app g (app f a) = app g (app f b), eq_trans 12 10. 14. 1, 6 ⊢ app f a ∈ Y, map_app_in_cod 3 6. 15. 1, 7 ⊢ app f b ∈ Y, map_app_in_cod 3 7. 16. 1, 2, 6, 7, 8 ⊢ app f a = app f b, inj_elim 2 14 15 13. 17. 1, 2, 6, 7, 8 ⊢ a = b, inj_elim 1 6 7 16. 18. 1, 2 ⊢ a ∈ X → b ∈ X → app (g ∘ f) a = app (g ∘ f) b → a = b, subj_intro_iii 17. 19. 1, 2 ⊢ ∀b. a ∈ X → b ∈ X → app (g ∘ f) a = app (g ∘ f) b → a = b, uq_intro 18. 20. 1, 2 ⊢ ∀a. ∀b. a ∈ X → b ∈ X → app (g ∘ f) a = app (g ∘ f) b → a = b, uq_intro 19. 21. 1, 2 ⊢ inj (g ∘ f) X Z, inj_intro 5 20. composition_inj_inj_is_inj. ⊢ inj f X Y → inj g Y Z → inj (g ∘ f) X Z, subj_intro_ii 21.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.