Proof 01. 1 ⊢ map f X Y, hypo. 02. 2 ⊢ map g Y Z, hypo. 03. 3 ⊢ x ∈ X, hypo. 04. 1, 2 ⊢ map (g ∘ f) X Z, composition_is_map 1 2. 05. 1, 3 ⊢ ∃y. y ∈ Y ∧ y = app f x, map_app_exists 1 3. 06. 6 ⊢ y ∈ Y ∧ y = app f x, hypo. 07. 6 ⊢ y ∈ Y, conj_eliml 6. 08. 6 ⊢ y = app f x, conj_elimr 6. 09. ⊢ app g y = app g y, eq_refl. 10. 6 ⊢ app g (app f x) = app g y, eq_subst 8 9, P t ↔ app g t = app g y. 11. 1, 3, 6 ⊢ (x, y) ∈ f, map_app_elim 1 3 8. 12. 2, 6 ⊢ (y, app g (app f x)) ∈ g, map_app_elim 2 7 10. 13. 1, 2, 3, 6 ⊢ (x, app g (app f x)) ∈ g ∘ f, composition_intro 11 12. 14. 1, 2, 3, 6 ⊢ app g (app f x) = app (g ∘ f) x, map_app_intro 4 13. 15. 1, 2, 3, 6 ⊢ app (g ∘ f) x = app g (app f x), eq_symm 14. 16. 1, 2, 3 ⊢ app (g ∘ f) x = app g (app f x), ex_elim 5 15. map_app_composition. ⊢ map f X Y → map g Y Z → x ∈ X → app (g ∘ f) x = app g (app f x), subj_intro_iii 16.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.