Proof 01. 1 ⊢ (a, b) ∈ R, hypo. 02. 2 ⊢ (b, c) ∈ S, hypo. 03. ⊢ (a, c) = (a, c), eq_refl. 04. 1 ⊢ (a, c) = (a, c) ∧ (a, b) ∈ R, conj_intro 3 1. 05. 1, 2 ⊢ (a, c) = (a, c) ∧ (a, b) ∈ R ∧ (b, c) ∈ S, conj_intro 4 2. 06. 1, 2 ⊢ ∃z. (a, c) = (a, z) ∧ (a, b) ∈ R ∧ (b, z) ∈ S, ex_intro 5. 07. 1, 2 ⊢ ∃y. ∃z. (a, c) = (a, z) ∧ (a, y) ∈ R ∧ (y, z) ∈ S, ex_intro 6. 08. 1, 2 ⊢ ∃x. ∃y. ∃z. (a, c) = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S, ex_intro 7. 09. 1 ⊢ set (a, b), set_intro 1. 10. 2 ⊢ set (b, c), set_intro 2. 11. 1 ⊢ set a, setl_from_pair 9. 12. 2 ⊢ set c, setr_from_pair 10. 13. 1, 2 ⊢ set (a, c), set_pair 11 12. 14. 1, 2 ⊢ (a, c) ∈ {t | ∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S}, comp_intro 13 8, P t ↔ (∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S). 15. ⊢ S ∘ R = {t | ∃x. ∃y. ∃z. t = (x, z) ∧ (x, y) ∈ R ∧ (y, z) ∈ S}, composition_eq. 16. 1, 2 ⊢ (a, c) ∈ S ∘ R, eq_subst_rev 15 14, P u ↔ (a, c) ∈ u. composition_intro. ⊢ (a, b) ∈ R → (b, c) ∈ S → (a, c) ∈ S ∘ R, subj_intro_ii 16.
Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.