Proof 01. 1 ⊢ set (x, y), hypo. 02. ⊢ (x, y) = {{x}, {x, y}}, pair_eq. 03. 1 ⊢ set {{x}, {x, y}}, eq_subst 2 1, P u ↔ set u. 04. 1 ⊢ set {{x}}, setl_from_union 3. 05. 1 ⊢ set {x}, set_from_sg 4. 06. 1 ⊢ set x, set_from_sg 5. setl_from_pair. ⊢ set (x, y) → set x, subj_intro 6. 07. 1 ⊢ set {{x, y}}, setr_from_union 3. 08. 1 ⊢ set {x, y}, set_from_sg 7. 09. 1 ⊢ set {y}, setr_from_union 8. 10. 1 ⊢ set y, set_from_sg 9. setr_from_pair. ⊢ set (x, y) → set y, subj_intro 10.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.