Proof 01. 1 ⊢ ¬set x, hypo. 02. 1 ⊢ {x} = UnivCl, sg_of_proper_class 1. 03. 1 ⊢ ¬set {x}, eq_subst_rev 2 UnivCl_is_proper, P u ↔ ¬set u. 04. ⊢ ¬set x → ¬set {x}, subj_intro 3. set_from_sg. ⊢ set {x} → set x, contraposition_rev 4.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.