Proof 01. 1 ⊢ ¬set A, hypo. 02. 2 ⊢ set A, hypo. 03. 1, 2 ⊢ ⊥, neg_elim 1 2. 04. 1, 2 ⊢ x = A, efq 3. 05. 1 ⊢ set A → x = A, subj_intro 4. 06. 6 ⊢ x ∈ UnivCl, hypo. 07. 6 ⊢ set x, set_intro 6. 08. 1, 6 ⊢ x ∈ {x | set A → x = A}, comp_intro 7 5. 09. ⊢ {A} = {x | set A → x = A}, sg_eq. 10. 1, 6 ⊢ x ∈ {A}, eq_subst_rev 9 8, P u ↔ x ∈ u. 11. 1 ⊢ x ∈ UnivCl → x ∈ {A}, subj_intro 10. 12. 1 ⊢ ∀x. x ∈ UnivCl → x ∈ {A}, uq_intro 11. 13. 1 ⊢ UnivCl ⊆ {A}, incl_intro 12. 14. ⊢ {A} ⊆ UnivCl, UnivCl_is_greatest. 15. 1 ⊢ {A} = UnivCl, incl_antisym 14 13. sg_of_proper_class. ⊢ ¬set A → {A} = UnivCl, subj_intro 15.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, ext.