Proof 01. 1 ⊢ x ∈ A, hypo. 02. 1 ⊢ set x, set_intro 1. 03. 1 ⊢ x ∈ UnivCl, UnivCl_intro 2. 04. ⊢ x ∈ A → x ∈ UnivCl, subj_intro 3. 05. ⊢ ∀x. x ∈ A → x ∈ UnivCl, uq_intro 4. UnivCl_is_greatest. ⊢ A ⊆ UnivCl, incl_intro 5.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.