Proof 01. 1 ⊢ x ∈ DiagCl, hypo. 02. 1 ⊢ set x, set_intro 1. 03. 1 ⊢ x ∈ UnivCl, UnivCl_intro 2. 04. ⊢ x ∈ DiagCl → x ∈ UnivCl, subj_intro 3. 05. ⊢ ∀x. x ∈ DiagCl → x ∈ UnivCl, uq_intro 4. 06. ⊢ DiagCl ⊆ UnivCl, incl_intro 5. 07. ⊢ DiagCl ⊆ UnivCl → set UnivCl → set DiagCl, subset. 08. ⊢ set UnivCl → set DiagCl, subj_elim 7 6. 09. 9 ⊢ set UnivCl, hypo. 10. 9 ⊢ set DiagCl, subj_elim 8 9. 11. 9 ⊢ ⊥, neg_elim DiagCl_is_proper 10. UnivCl_is_proper. ⊢ ¬set UnivCl, neg_intro 11.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, subset.