Proof 01. 1 ⊢ R = {x | ¬x ∈ x}, hypo. 02. 2 ⊢ u ∈ R, hypo. 03. 1, 2 ⊢ u ∈ {x | ¬x ∈ x}, eq_subst 1 2. 04. 1, 2 ⊢ ¬u ∈ u, comp_elim 3. 05. 1 ⊢ u ∈ R → ¬u ∈ u, subj_intro 4. 06. 1 ⊢ R ∈ R → ¬R ∈ R, 5. 07. 7 ⊢ set R, hypo. 08. 8 ⊢ ¬R ∈ R, hypo. 09. 7, 8 ⊢ R ∈ {x | ¬x ∈ x}, comp_intro 7 8. 10. 1, 7, 8 ⊢ R ∈ R, eq_subst_rev 1 9, P x ↔ R ∈ x. 11. 1, 7 ⊢ ¬R ∈ R → R ∈ R, subj_intro 10. 12. 1, 7 ⊢ R ∈ R ↔ ¬R ∈ R, bij_intro 6 11. 13. ⊢ (R ∈ R ↔ ¬R ∈ R) → ⊥, diag_contra. 14. 1, 7 ⊢ ⊥, subj_elim 13 12. 15. 1 ⊢ ¬set R, neg_intro 14. 16. ⊢ R = {x | ¬x ∈ x} → ¬set R, subj_intro 15. 17. ⊢ DiagCl = {x | ¬x ∈ x} → ¬set DiagCl, 16. DiagCl_is_proper. ⊢ ¬set DiagCl, subj_elim 17 DiagCl_eq.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.