Proof 01. 1 ⊢ ¬A → ¬B, hypo. 02. 1 ⊢ ¬¬B → ¬¬A, contraposition 1. 03. 3 ⊢ B, hypo. 04. 3 ⊢ ¬¬B, dn_intro 3. 05. 1, 3 ⊢ ¬¬A, subj_elim 2 4. 06. 1, 3 ⊢ A, dne 5. 07. 1 ⊢ B → A, subj_intro 6. contraposition_rev. ⊢ (¬A → ¬B) → (B → A), subj_intro 7.
DependenciesThe given proof depends on two axioms:efq, lem.