Proof 01. ⊢ A ⊆ A ∪ B, union_incl_left. 02. ⊢ A ⊆ A ∪ B → set (A ∪ B) → set A, subset. setl_from_union. ⊢ set (A ∪ B) → set A, subj_elim 2 1.
DependenciesThe given proof depends on four axioms:comp, eq_refl, eq_subst, subset.