Proof 01. ⊢ B ⊆ A ∪ B, union_incl_right. 02. ⊢ B ⊆ A ∪ B → set (A ∪ B) → set B, subset. setr_from_union. ⊢ set (A ∪ B) → set B, subj_elim 2 1.
DependenciesThe given proof depends on four axioms:comp, eq_refl, eq_subst, subset.