Proof 01. 1 ⊢ map f X Y, hypo. 02. 2 ⊢ ∀a. ∀b. a ∈ X → b ∈ X → app f a = app f b → a = b, hypo. 03. 1, 2 ⊢ map f X Y ∧ ∀a. ∀b. a ∈ X → b ∈ X → app f a = app f b → a = b, conj_intro 1 2. 04. 1, 2 ⊢ inj f X Y, rsubj_elim inj_equi 3. inj_intro. ⊢ map f X Y → (∀a. ∀b. a ∈ X → b ∈ X → app f a = app f b → a = b) → inj f X Y, subj_intro_ii 4.