Proof let is_diff z ↔ (∃m. ∃n. m ∈ ℕ ∧ n ∈ ℕ ∧ z = m - n). 01. 1 ⊢ a ∈ ℤ, hypo. 02. 1 ⊢ a ∈ {z | z ∈ ℝ ∧ is_diff z}, eq_subst int_eq 1, P t ↔ a ∈ t. 03. 1 ⊢ a ∈ ℝ ∧ is_diff a, comp_elim 2. 04. 1 ⊢ a ∈ ℝ, conj_eliml 3. 05. 1 ⊢ is_diff a, conj_elimr 3. 06. 6 ⊢ ∃n. m ∈ ℕ ∧ n ∈ ℕ ∧ a = m - n, hypo. 07. 7 ⊢ m ∈ ℕ ∧ n ∈ ℕ ∧ a = m - n, hypo. 08. 7 ⊢ m ∈ ℕ, conj_elimll 7. 09. 7 ⊢ n ∈ ℕ, conj_elimlr 7. 10. 7 ⊢ m ∈ ℝ, incl_elim nat_incl_in_real 8. 11. 7 ⊢ n ∈ ℝ, incl_elim nat_incl_in_real 9. 12. 7 ⊢ a = m - n, conj_elimr 7. 13. 7 ⊢ -a = -(m - n), eq_cong 12, f t = -t. 14. 7 ⊢ -(m - n) = n - m, rsub_neg 10 11. 15. 7 ⊢ -a = n - m, eq_trans 13 14. 16. 7 ⊢ n ∈ ℕ ∧ m ∈ ℕ, conj_intro 9 8. 17. 7 ⊢ n ∈ ℕ ∧ m ∈ ℕ ∧ -a = n - m, conj_intro 16 15. 18. 7 ⊢ ∃m. n ∈ ℕ ∧ m ∈ ℕ ∧ -a = n - m, ex_intro 17. 19. 7 ⊢ is_diff (-a), ex_intro 18. 20. 1 ⊢ -a ∈ ℝ, rneg_closed 4. 21. 1 ⊢ set (-a), set_intro 20. 22. 1, 7 ⊢ -a ∈ ℝ ∧ is_diff (-a), conj_intro 20 19. 23. 1, 7 ⊢ -a ∈ {z | z ∈ ℝ ∧ is_diff z}, comp_intro 21 22, P z ↔ z ∈ ℝ ∧ is_diff z. 24. 1, 7 ⊢ -a ∈ ℤ, eq_subst_rev int_eq 23, P t ↔ -a ∈ t. 25. 1, 6 ⊢ -a ∈ ℤ, ex_elim 6 24. 26. 1 ⊢ -a ∈ ℤ, ex_elim 5 25. ineg_closed. ⊢ a ∈ ℤ → -a ∈ ℤ, subj_intro 26.
Dependencies
The given proof depends on 14 axioms:
comp, eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, real_is_set, rmul_closed, rmul_comm, rmul_distl_add, rmul_neutr, rneg_closed.