Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. ⊢ a - b = a + -b, rsub_eq. 04. ⊢ -(a - b) = -(a + -b), eq_cong 3, f t = -t. 05. 2 ⊢ -b ∈ ℝ, rneg_closed 2. 06. 1, 2 ⊢ -(a + -b) = -a + -(-b), rneg_dist_add 1 5. 07. 1, 2 ⊢ -(a - b) = -a + -(-b), eq_trans 4 6. 08. 2 ⊢ -(-b) = b, rneg_involution 2. 09. 1, 2 ⊢ -(a - b) = -a + b, eq_subst 8 7, P t ↔ -(a - b) = -a + t. 10. 1 ⊢ -a ∈ ℝ, rneg_closed 1. 11. 1, 2 ⊢ -a + b = b + -a, radd_comm 10 2. 12. ⊢ b - a = b + -a, rsub_eq. 13. 1, 2 ⊢ -a + b = b - a, eq_trans_rr 11 12. 14. 1, 2 ⊢ -(a - b) = b - a, eq_trans 9 13. rsub_neg. ⊢ a ∈ ℝ → b ∈ ℝ → -(a - b) = b - a, subj_intro_ii 14.
Dependencies
The given proof depends on 12 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_comm, rmul_distl_add, rmul_neutr, rneg_closed.