Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ b ∈ ℝ, hypo. 03. 1, 2 ⊢ a + b ∈ ℝ, radd_closed 1 2. 04. 1 ⊢ (-1)⋅a = -a, rmul_minus_one 1. 05. 2 ⊢ (-1)⋅b = -b, rmul_minus_one 2. 06. 1, 2 ⊢ (-1)⋅(a + b) = -(a + b), rmul_minus_one 3. 07. 1, 2 ⊢ -(a + b) = (-1)⋅(a + b), eq_symm 6. 08. ⊢ -1 ∈ ℝ, calc. 09. 1, 2 ⊢ (-1)⋅(a + b) = (-1)⋅a + (-1)⋅b, rmul_distl_add 8 1 2. 10. 1, 2 ⊢ -(a + b) = (-1)⋅a + (-1)⋅b, eq_trans 7 9. 11. 1, 2 ⊢ -(a + b) = -a + (-1)⋅b, eq_subst 4 10, P t ↔ -(a + b) = t + (-1)⋅b. 12. 1, 2 ⊢ -(a + b) = -a + -b, eq_subst 5 11, P t ↔ -(a + b) = -a + t. rneg_dist_add. ⊢ a ∈ ℝ → b ∈ ℝ → -(a + b) = -a + -b, subj_intro_ii 12.
Dependencies
The given proof depends on 12 axioms:
eq_refl, eq_subst, radd_assoc, radd_closed, radd_comm, radd_inv, radd_neutr, rmul_closed, rmul_comm, rmul_distl_add, rmul_neutr, rneg_closed.