Proof let inductive A ↔ A ⊆ ℝ ∧ 0 ∈ A ∧ (∀n. n ∈ A → n + 1 ∈ A). 01. ⊢ ℝ ⊆ ℝ, incl_refl. 02. ⊢ 0 ∈ ℝ, calc. 03. 3 ⊢ n ∈ ℝ, hypo. 04. ⊢ 1 ∈ ℝ, calc. 05. 3 ⊢ n + 1 ∈ ℝ, radd_closed 3 4. 06. ⊢ n ∈ ℝ → n + 1 ∈ ℝ, subj_intro 5. 07. ⊢ ∀n. n ∈ ℝ → n + 1 ∈ ℝ, uq_intro 6. 08. ⊢ ℝ ⊆ ℝ ∧ 0 ∈ ℝ, conj_intro 1 2. 09. ⊢ inductive ℝ, conj_intro 8 7. 10. ⊢ ℝ ∈ {A | inductive A}, comp_intro real_is_set 9, P A ↔ inductive A. nat_incl_in_real. ⊢ ℕ ⊆ ℝ, Intersection_is_lower_bound nat_eq 10.
Dependencies
The given proof depends on four axioms:
comp, eq_subst, radd_closed, real_is_set.