Theorem incl_refl

Theorem. incl_refl
A ⊆ A
Proof
01. 1 ⊢ x ∈ A, hypo.
02. ⊢ x ∈ A → x ∈ A, subj_intro 1.
03. ⊢ ∀x. x ∈ A → x ∈ A, uq_intro 2.
incl_refl. ⊢ A ⊆ A, incl_intro 3.