Proof 01. 1 ⊢ map f X Y, hypo. 02. 2 ⊢ y ∈ rng f, hypo. 03. 1 ⊢ img f X = rng f, map_img_of_dom_is_rng 1. 04. 1, 2 ⊢ y ∈ img f X, eq_subst_rev 3 2, P t ↔ y ∈ t. 05. 1, 2 ⊢ ∃x. x ∈ X ∧ (x, y) ∈ f, img_elim 4. 06. 6 ⊢ x ∈ X ∧ (x, y) ∈ f, hypo. 07. 6 ⊢ x ∈ X, conj_eliml 6. 08. 6 ⊢ (x, y) ∈ f, conj_elimr 6. 09. 1, 6 ⊢ y = app f x, map_app_intro 1 8. 10. 1, 6 ⊢ x ∈ X ∧ y = app f x, conj_intro 7 9. 11. 1, 6 ⊢ ∃x. x ∈ X ∧ y = app f x, ex_intro 10. 12. 1, 2 ⊢ ∃x. x ∈ X ∧ y = app f x, ex_elim 5 11. map_rng_elim. ⊢ map f X Y → y ∈ rng f → ∃x. x ∈ X ∧ y = app f x, subj_intro_ii 12.
Dependencies
The given proof depends on seven axioms:
comp, efq, eq_refl, eq_subst, ext, lem, subset.