Proof 01. 1 ⊢ y ∈ img R A, hypo. 02. 1 ⊢ y ∈ {y | ∃x. x ∈ A ∧ (x, y) ∈ R}, eq_subst img_eq 1, P u ↔ y ∈ u. 03. 1 ⊢ ∃x. x ∈ A ∧ (x, y) ∈ R, comp_elim 2. img_elim. ⊢ y ∈ img R A → ∃x. x ∈ A ∧ (x, y) ∈ R, subj_intro 3.
Dependencies
The given proof depends on two axioms:
comp, eq_subst.