Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ transitive x, hypo. 03. 3 ⊢ u ∈ x ∪ {x}, hypo. 04. 3 ⊢ u ∈ x ∨ u ∈ {x}, union_elim 3. 05. 5 ⊢ u ∈ x, hypo. 06. 2, 5 ⊢ u ⊆ x, transitive_elim 2 5. 07. 7 ⊢ u ∈ {x}, hypo. 08. 1, 7 ⊢ u = x, sg_elim 1 7. 09. 1, 7 ⊢ u ⊆ x, incl_from_eq 8. 10. 1, 2, 3 ⊢ u ⊆ x, disj_elim 4 6 9. 11. ⊢ x ⊆ x ∪ {x}, union_incl_left. 12. 1, 2, 3 ⊢ u ⊆ x ∪ {x}, incl_trans 10 11. 13. 1, 2 ⊢ u ∈ x ∪ {x} → u ⊆ x ∪ {x}, subj_intro 12. 14. 1, 2 ⊢ ∀u. u ∈ x ∪ {x} → u ⊆ x ∪ {x}, uq_intro 13. 15. 1, 2 ⊢ transitive (x ∪ {x}), transitive_intro 14. transitive_closed_succ. ⊢ set x → transitive x → transitive (x ∪ {x}), subj_intro_ii 15.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.