Proof 01. 1 ⊢ A = B, hypo. 02. ⊢ A ⊆ A, incl_refl. 03. 1 ⊢ A ⊆ B, eq_subst 1 2, P X ↔ A ⊆ X. incl_from_eq. ⊢ A = B → A ⊆ B, subj_intro 3.
DependenciesThe given proof depends on one axiom:eq_subst.