Proof 01. 1 ⊢ b ∈ ℕ, hypo. 02. 1 ⊢ 0 + b = b, nadd_neutl 1. 03. 1 ⊢ 0 + b ∈ ℕ, eq_subst_rev 2 1, P t ↔ t ∈ ℕ. 04. 4 ⊢ n ∈ ℕ, hypo. 05. 5 ⊢ n + b ∈ ℕ, hypo. 06. 5 ⊢ n + b + 1 ∈ ℕ, succ_in_nat 5. 07. 4 ⊢ n ∈ ℝ, incl_elim nat_incl_in_real 4. 08. 1 ⊢ b ∈ ℝ, incl_elim nat_incl_in_real 1. 09. ⊢ 1 ∈ ℝ, calc. 10. 1, 4 ⊢ n + b + 1 = n + (b + 1), radd_assoc 7 8 9. 11. 1 ⊢ b + 1 = 1 + b, radd_comm 8 9. 12. 1, 4 ⊢ n + b + 1 = n + (1 + b), eq_subst 11 10, P t ↔ n + b + 1 = n + t. 13. 1, 4 ⊢ n + 1 + b = n + (1 + b), radd_assoc 7 9 8. 14. 1, 4 ⊢ n + (1 + b) = n + 1 + b, eq_symm 13. 15. 1, 4 ⊢ n + b + 1 = n + 1 + b, eq_trans 12 14. 16. 1, 4, 5 ⊢ n + 1 + b ∈ ℕ, eq_subst 15 6, P t ↔ t ∈ ℕ. 17. 1 ⊢ n ∈ ℕ → n + b ∈ ℕ → n + 1 + b ∈ ℕ, subj_intro_ii 16. 18. 1 ⊢ ∀n. n ∈ ℕ → n + b ∈ ℕ → n + 1 + b ∈ ℕ, uq_intro 17. 19. 1 ⊢ ∀n. n ∈ ℕ → n + b ∈ ℕ, nat_induction 3 18, P n ↔ n + b ∈ ℕ. 20. 20 ⊢ a ∈ ℕ, hypo. 21. 20, 1 ⊢ a + b ∈ ℕ, uq_bounded_elim 19 20. nadd_closed. ⊢ a ∈ ℕ → b ∈ ℕ → a + b ∈ ℕ, subj_intro_ii 21.
Dependencies
The given proof depends on 10 axioms:
comp, eq_refl, eq_subst, ext, radd_assoc, radd_closed, radd_comm, radd_neutr, real_is_set, subset.