Proof let inductive A ↔ A ⊆ ℝ ∧ 0 ∈ A ∧ (∀n. n ∈ A → n + 1 ∈ A). 01. 1 ⊢ n ∈ ℕ, hypo. 02. 2 ⊢ A ∈ {A | inductive A}, hypo. 03. 2 ⊢ inductive A, comp_elim 2. 04. 2 ⊢ ∀n. n ∈ A → n + 1 ∈ A, conj_elimr 3. 05. 2 ⊢ ℕ ⊆ A, Intersection_is_lower_bound nat_eq 2. 06. 1, 2 ⊢ n ∈ A, incl_elim 5 1. 07. 1, 2 ⊢ n + 1 ∈ A, uq_bounded_elim 4 6. 08. 1 ⊢ A ∈ {A | inductive A} → n + 1 ∈ A, subj_intro 7. 09. 1 ⊢ ∀A. A ∈ {A | inductive A} → n + 1 ∈ A, uq_intro 8. 10. 1 ⊢ n ∈ ℝ, incl_elim nat_incl_in_real 1. 11. ⊢ 1 ∈ ℝ, calc. 12. 1 ⊢ n + 1 ∈ ℝ, radd_closed 10 11. 13. 1 ⊢ set (n + 1), set_intro 12. 14. 1 ⊢ n + 1 ∈ ⋂{A | inductive A}, Intersection_intro 13 9. 15. 1 ⊢ n + 1 ∈ ℕ, eq_subst_rev nat_eq 14, P x ↔ n + 1 ∈ x. succ_in_nat. ⊢ n ∈ ℕ → n + 1 ∈ ℕ, subj_intro 15.
Dependencies
The given proof depends on five axioms:
comp, eq_refl, eq_subst, radd_closed, real_is_set.