Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ ∀y. y ∈ M → x ∈ y, hypo. 03. 1, 2 ⊢ x ∈ {x | ∀y. y ∈ M → x ∈ y}, comp_intro 1 2. 04. 1, 2 ⊢ x ∈ ⋂M, eq_subst_rev Intersection_eq 3, P A ↔ x ∈ A. Intersection_intro. ⊢ set x → (∀y. y ∈ M → x ∈ y) → x ∈ ⋂M, subj_intro_ii 4.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.