Theorem nadd_neutl

Theorem. nadd_neutl
a ∈ ℕ → 0 + a = a
Proof
nadd_neutl. ⊢ a ∈ ℕ → 0 + a = a,
  pred_restr nat_incl_in_real radd_neutl.

Dependencies
The given proof depends on seven axioms:
comp, eq_refl, eq_subst, radd_closed, radd_comm, radd_neutr, real_is_set.