The induction principle for the natural numbers. See wf_induction for a generalization to well-founded relations.
Proof let M = {n | n ∈ ℕ ∧ P n}. 01. 1 ⊢ P 0, hypo. 02. 2 ⊢ ∀n. n ∈ ℕ → P n → P (n + 1), hypo. 03. ⊢ M ⊆ ℕ, sep_is_subclass. 04. 1 ⊢ 0 ∈ ℕ ∧ P 0, conj_intro zero_in_nat 1. 05. ⊢ set 0, set_intro zero_in_nat. 06. ⊢ set u → Q u → u ∈ {n | Q n}, comp_intro. 07. 1 ⊢ 0 ∈ M, 6 5 4, Q n ↔ n ∈ ℕ ∧ P n. 08. 8 ⊢ n ∈ M, hypo. 09. 8 ⊢ n ∈ ℕ ∧ P n, comp_elim 8. 10. 8 ⊢ n ∈ ℕ, conj_eliml 9. 11. 8 ⊢ P n, conj_elimr 9. 12. 2, 8 ⊢ P n → P (n + 1), uq_bounded_elim 2 10. 13. 2, 8 ⊢ P (n + 1), subj_elim 12 11. 14. 8 ⊢ n + 1 ∈ ℕ, succ_in_nat 10. 15. 8 ⊢ set (n + 1), set_intro 14. 16. 2, 8 ⊢ n + 1 ∈ ℕ ∧ P (n + 1), conj_intro 14 13. 17. 2, 8 ⊢ n + 1 ∈ M, comp_intro 15 16, P n ↔ n ∈ ℕ ∧ P n. 18. 2 ⊢ n ∈ M → n + 1 ∈ M, subj_intro 17. 19. 2 ⊢ ∀n. n ∈ M → n + 1 ∈ M, uq_intro 18. 20. 1, 2 ⊢ M = ℕ, nat_induction_sets 3 7 19. 21. 21 ⊢ n ∈ ℕ, hypo. 22. 1, 2, 21 ⊢ n ∈ M, eq_subst_rev 20 21. 23. 1, 2, 21 ⊢ n ∈ ℕ ∧ P n, comp_elim 22. 24. 1, 2, 21 ⊢ P n, conj_elimr 23. 25. 1, 2 ⊢ n ∈ ℕ → P n, subj_intro 24. 26. 1, 2 ⊢ ∀n. n ∈ ℕ → P n, uq_intro 25. nat_induction. ⊢ P 0 → (∀n. n ∈ ℕ → P n → P (n + 1)) → (∀n. n ∈ ℕ → P n), subj_intro_ii 26.
Dependencies
The given proof depends on seven axioms:
comp, eq_refl, eq_subst, ext, radd_closed, real_is_set, subset.