Proof 01. 1 ⊢ wf R M, hypo. 02. 2 ⊢ A = {x | x ∈ M ∧ P x}, hypo. 03. 3 ⊢ ∀x. x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → P y) → P x, hypo. 04. 3 ⊢ x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → P y) → P x, uq_elim 3. 05. 5 ⊢ x ∈ M, hypo. 06. 3, 5 ⊢ (∀y. y ∈ M → (y, x) ∈ R → P y) → P x, subj_elim 4 5. 07. 7 ⊢ ∀y. y ∈ M → (y, x) ∈ R → y ∈ A, hypo. 08. 7 ⊢ y ∈ M → (y, x) ∈ R → y ∈ A, uq_elim 7. 09. 9 ⊢ y ∈ M, hypo. 10. 7, 9 ⊢ (y, x) ∈ R → y ∈ A, subj_elim 8 9. 11. 11 ⊢ (y, x) ∈ R, hypo. 12. 7, 9, 11 ⊢ y ∈ A, subj_elim 10 11. 13. 2, 7, 9, 11 ⊢ y ∈ {x | x ∈ M ∧ P x}, eq_subst 2 12, P u ↔ y ∈ u. 14. 2, 7, 9, 11 ⊢ y ∈ M ∧ P y, comp_elim 13. 15. 2, 7, 9, 11 ⊢ P y, conj_elimr 14. 16. 2, 7, 9 ⊢ (y, x) ∈ R → P y, subj_intro 15. 17. 2, 7 ⊢ y ∈ M → (y, x) ∈ R → P y, subj_intro 16. 18. 2, 7 ⊢ ∀y. y ∈ M → (y, x) ∈ R → P y, uq_intro 17. 19. 2, 3, 5, 7 ⊢ P x, subj_elim 6 18. 20. 2, 3, 5, 7 ⊢ x ∈ M ∧ P x, conj_intro 5 19. 21. 5 ⊢ set x, set_intro 5. 22. 2, 3, 5, 7 ⊢ x ∈ {x | x ∈ M ∧ P x}, comp_intro 21 20. 23. 2, 3, 5, 7 ⊢ x ∈ A, eq_subst_rev 2 22, P u ↔ x ∈ u. 24. 2, 3, 5 ⊢ (∀y. y ∈ M → (y, x) ∈ R → y ∈ A) → x ∈ A, subj_intro 23. 25. 2, 3 ⊢ x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → y ∈ A) → x ∈ A, subj_intro 24. 26. 2, 3 ⊢ ∀x. x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → y ∈ A) → x ∈ A, uq_intro 25. 27. 27 ⊢ x ∈ A, hypo. 28. 2, 27 ⊢ x ∈ {x | x ∈ M ∧ P x}, eq_subst 2 27, P u ↔ x ∈ u. 29. 2, 27 ⊢ x ∈ M ∧ P x, comp_elim 28. 30. 2, 27 ⊢ x ∈ M, conj_eliml 29. 31. 2 ⊢ x ∈ A → x ∈ M, subj_intro 30. 32. 2 ⊢ ∀x. x ∈ A → x ∈ M, uq_intro 31. 33. 2 ⊢ A ⊆ M, incl_intro 32. 34. 1, 2, 3 ⊢ A = M, wf_induction_set 1 33 26. 35. 35 ⊢ x ∈ M, hypo. 36. 1, 2, 3, 35 ⊢ x ∈ A, eq_subst_rev 34 35, P u ↔ x ∈ u. 37. 1, 2, 3, 35 ⊢ x ∈ {x | x ∈ M ∧ P x}, eq_subst 2 36, P u ↔ x ∈ u. 38. 1, 2, 3, 35 ⊢ x ∈ M ∧ P x, comp_elim 37. 39. 1, 2, 3, 35 ⊢ P x, conj_elimr 38. 40. 1, 2, 3 ⊢ x ∈ M → P x, subj_intro 39. 41. 1, 3, 2 ⊢ ∀x. x ∈ M → P x, uq_intro 40. 42. 1, 3 ⊢ A = {x | x ∈ M ∧ P x} → ∀x. x ∈ M → P x, subj_intro 41. 43. 1, 3 ⊢ {x | x ∈ M ∧ P x} = {x | x ∈ M ∧ P x} → ∀x. x ∈ M → P x, 42. 44. ⊢ {x | x ∈ M ∧ P x} = {x | x ∈ M ∧ P x}, eq_refl. 45. 1, 3 ⊢ ∀x. x ∈ M → P x, subj_elim 43 44. wf_induction. ⊢ wf R M → (∀x. x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → P y) → P x) → (∀x. x ∈ M → P x), subj_intro_ii 45.
Dependencies
The given proof depends on six axioms:
comp, efq, eq_refl, eq_subst, ext, lem.