Proof 01. 1 ⊢ A ⊆ M, hypo. 02. 2 ⊢ M \ A = ∅, hypo. 03. 2 ⊢ M ⊆ A, empty_diff 2. 04. 1, 2 ⊢ A = M, incl_antisym 1 3. 05. 1 ⊢ M \ A = ∅ → A = M, subj_intro 4. 06. 1 ⊢ ¬A = M → ¬M \ A = ∅, contraposition 5. 07. 7 ⊢ ¬A = M, hypo. 08. 1, 7 ⊢ ¬M \ A = ∅, subj_elim 6 7. 09. 9 ⊢ wf R M, hypo. 10. 9 ⊢ ∀A. A ⊆ M → ¬A = ∅ → ∃y. y ∈ A ∧ ¬∃x. x ∈ A ∧ (x, y) ∈ R, wf_unfold 9. 11. 9 ⊢ M \ A ⊆ M → ¬M \ A = ∅ → ∃y. y ∈ M \ A ∧ ¬∃x. x ∈ M \ A ∧ (x, y) ∈ R, uq_elim 10. 12. ⊢ M \ A ⊆ M, diff_incl. 13. 9 ⊢ ¬M \ A = ∅ → ∃y. y ∈ M \ A ∧ ¬∃x. x ∈ M \ A ∧ (x, y) ∈ R, subj_elim 11 12. 14. 9, 1, 7 ⊢ ∃y. y ∈ M \ A ∧ ¬∃x. x ∈ M \ A ∧ (x, y) ∈ R, subj_elim 13 8. 15. 15 ⊢ y ∈ M \ A ∧ ¬∃x. x ∈ M \ A ∧ (x, y) ∈ R, hypo. 16. 15 ⊢ y ∈ M \ A, conj_eliml 15. 17. 15 ⊢ y ∈ M, incl_elim 12 16. 18. 15 ⊢ ¬∃x. x ∈ M \ A ∧ (x, y) ∈ R, conj_elimr 15. 19. 15 ⊢ ∀x. x ∈ M \ A → ¬(x, y) ∈ R, neg_ex_bounded 18. 20. 15 ⊢ x ∈ M \ A → ¬(x, y) ∈ R, uq_elim 19. 21. 21 ⊢ ∀x. x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → y ∈ A) → x ∈ A, hypo. 22. 21 ⊢ y ∈ M → (∀x. x ∈ M → (x, y) ∈ R → x ∈ A) → y ∈ A, uq_elim 21. 23. 21, 15 ⊢ (∀x. x ∈ M → (x, y) ∈ R → x ∈ A) → y ∈ A, subj_elim 22 17. 24. 21, 15 ⊢ ¬y ∈ A → ¬(∀x. x ∈ M → (x, y) ∈ R → x ∈ A), contraposition 23. 25. 15 ⊢ ¬y ∈ A, diff_elimr 16. 26. 21, 15 ⊢ ¬(∀x. x ∈ M → (x, y) ∈ R → x ∈ A), subj_elim 24 25. 27. 21, 15 ⊢ ∃x. x ∈ M ∧ ¬((x, y) ∈ R → x ∈ A), neg_uq_bounded 26. 28. 28 ⊢ x ∈ M ∧ ¬((x, y) ∈ R → x ∈ A), hypo. 29. 28 ⊢ x ∈ M, conj_eliml 28. 30. 28 ⊢ ¬((x, y) ∈ R → x ∈ A), conj_elimr 28. 31. 28 ⊢ (x, y) ∈ R ∧ ¬x ∈ A, neg_subj 30. 32. 28 ⊢ (x, y) ∈ R, conj_eliml 31. 33. 28 ⊢ ¬x ∈ A, conj_elimr 31. 34. 28 ⊢ x ∈ M \ A, diff_intro 29 33. 35. 15, 28 ⊢ ¬(x, y) ∈ R, subj_elim 20 34. 36. 15, 28 ⊢ ⊥, neg_elim 35 32. 37. 21, 15 ⊢ ⊥, ex_elim 27 36. 38. 9, 1, 21, 7 ⊢ ⊥, ex_elim 14 37. 39. 9, 1, 21 ⊢ ¬¬A = M, neg_intro 38. 40. 9, 1, 21 ⊢ A = M, dne 39. wf_induction_set. ⊢ wf R M → A ⊆ M → (∀x. x ∈ M → (∀y. y ∈ M → (y, x) ∈ R → y ∈ A) → x ∈ A) → A = M, subj_intro_iii 40.
Dependencies
The given proof depends on six axioms:
comp, efq, eq_refl, eq_subst, ext, lem.