Proof 01. 1 ⊢ ¬∃x. P x ∧ Q x, hypo. 02. 1 ⊢ ∀x. ¬(P x ∧ Q x), neg_ex 1. 03. 1 ⊢ ¬(P x ∧ Q x), uq_elim 2. 04. 1 ⊢ ¬P x ∨ ¬Q x, neg_conj 3. 05. 1 ⊢ P x → ¬Q x, subj_from_disj 4. 06. 1 ⊢ ∀x. P x → ¬Q x, uq_intro 5. neg_ex_bounded. ⊢ (¬∃x. P x ∧ Q x) → (∀x. P x → ¬Q x), subj_intro 6.