Proof 01. 1 ⊢ ¬(A ∧ B), hypo. 02. ⊢ A ∨ ¬A, lem. 03. 3 ⊢ A, hypo. 04. 4 ⊢ B, hypo. 05. 3, 4 ⊢ A ∧ B, conj_intro 3 4. 06. 1, 3, 4 ⊢ ⊥, neg_elim 1 5. 07. 1, 3 ⊢ ¬B, neg_intro 6. 08. 1, 3 ⊢ ¬A ∨ ¬B, disj_intror 7. 09. 9 ⊢ ¬A, hypo. 10. 9 ⊢ ¬A ∨ ¬B, disj_introl 9. 11. 1 ⊢ ¬A ∨ ¬B, disj_elim 2 8 10. neg_conj. ⊢ ¬(A ∧ B) → ¬A ∨ ¬B, subj_intro 11.
Dependencies
The given proof depends on one axiom:
lem.