Proof 01. 1 ⊢ ¬∃x. P x, hypo. 02. 2 ⊢ P x, hypo. 03. 2 ⊢ ∃x. P x, ex_intro 2. 04. 1, 2 ⊢ ⊥, neg_elim 1 3. 05. 1 ⊢ ¬P x, neg_intro 4. 06. 1 ⊢ ∀x. ¬P x, uq_intro 5. neg_ex. ⊢ (¬∃x. P x) → (∀x. ¬P x), subj_intro 6.