Proof 01. 1 ⊢ A \ B = ∅, hypo. 02. 2 ⊢ x ∈ A, hypo. 03. 3 ⊢ ¬x ∈ B, hypo. 04. 2, 3 ⊢ x ∈ A \ B, diff_intro 2 3. 05. 1, 2, 3 ⊢ x ∈ ∅, eq_subst 1 4, P u ↔ x ∈ u. 06. 1, 2, 3 ⊢ ⊥, empty_contra 5. 07. 1, 2 ⊢ ¬¬x ∈ B, neg_intro 6. 08. 1, 2 ⊢ x ∈ B, dne 7. 09. 1 ⊢ x ∈ A → x ∈ B, subj_intro 8. 10. 1 ⊢ ∀x. x ∈ A → x ∈ B, uq_intro 9. 11. 1 ⊢ A ⊆ B, incl_intro 10. empty_diff. ⊢ A \ B = ∅ → A ⊆ B, subj_intro 11.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, lem.