Proof 01. 1 ⊢ ¬∀x. P x → Q x, hypo. 02. 1 ⊢ ∃x. ¬(P x → Q x), neg_uq 1. 03. 3 ⊢ ¬(P x → Q x), hypo. 04. 3 ⊢ P x ∧ ¬Q x, neg_subj 3. 05. 3 ⊢ ∃x. P x ∧ ¬Q x, ex_intro 4. 06. 1 ⊢ ∃x. P x ∧ ¬Q x, ex_elim 2 5. neg_uq_bounded. ⊢ (¬∀x. P x → Q x) → (∃x. P x ∧ ¬Q x), subj_intro 6.