Proof let inductive A ↔ A ⊆ ℝ ∧ 0 ∈ A ∧ (∀n. n ∈ A → n + 1 ∈ A). 01. 1 ⊢ A ∈ {A | inductive A}, hypo. 02. 1 ⊢ inductive A, comp_elim 1. 03. 1 ⊢ 0 ∈ A, conj_elimlr 2. 04. ⊢ A ∈ {A | inductive A} → 0 ∈ A, subj_intro 3. 05. ⊢ ∀A. A ∈ {A | inductive A} → 0 ∈ A, uq_intro 4. 06. ⊢ 0 ∈ ℝ, calc. 07. ⊢ set 0, set_intro 6. 08. ⊢ 0 ∈ ⋂{A | inductive A}, Intersection_intro 7 5. zero_in_nat. ⊢ 0 ∈ ℕ, eq_subst_rev nat_eq 8, P x ↔ 0 ∈ x.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.