Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ x ∈ power {a}, hypo. 03. 2 ⊢ x ⊆ {a}, power_elim 2. 04. 1, 2 ⊢ x = ∅ ∨ x = {a}, subsets_of_sg 1 3. 05. 5 ⊢ x = ∅, hypo. 06. 5 ⊢ x ∈ {∅}, sg_intro empty_set_is_set 5. 07. 5 ⊢ x ∈ {∅, {a}}, union_introl 6. 08. 8 ⊢ x = {a}, hypo. 09. 1 ⊢ set {a}, set_sg 1. 10. 1, 8 ⊢ x ∈ {{a}}, sg_intro 9 8. 11. 1, 8 ⊢ x ∈ {∅, {a}}, union_intror 10. 12. 1, 2 ⊢ x ∈ {∅, {a}}, disj_elim 4 7 11. 13. 1 ⊢ x ∈ power {a} → x ∈ {∅, {a}}, subj_intro 12. 14. 14 ⊢ x ∈ {∅, {a}}, hypo. 15. 14 ⊢ x ∈ {∅} ∨ x ∈ {{a}}, union_elim 14. 16. 16 ⊢ x ∈ {∅}, hypo. 17. 16 ⊢ x = ∅, sg_elim empty_set_is_set 16. 18. ⊢ ∅ ⊆ {a}, empty_set_is_least. 19. 16 ⊢ x ⊆ {a}, eq_subst_rev 17 18, P u ↔ u ⊆ {a}. 20. 20 ⊢ x ∈ {{a}}, hypo. 21. 1, 20 ⊢ x = {a}, sg_elim 9 20. 22. ⊢ {a} ⊆ {a}, incl_refl. 23. 1, 20 ⊢ x ⊆ {a}, eq_subst_rev 21 22, P u ↔ u ⊆ {a}. 24. 1, 14 ⊢ x ⊆ {a}, disj_elim 15 19 23. 25. 14 ⊢ set x, set_intro 14. 26. 1, 14 ⊢ x ∈ power {a}, power_intro 25 24. 27. 1 ⊢ x ∈ {∅, {a}} → x ∈ power {a}, subj_intro 26. 28. 1 ⊢ x ∈ power {a} ↔ x ∈ {∅, {a}}, bij_intro 13 27. 29. 1 ⊢ ∀x. x ∈ power {a} ↔ x ∈ {∅, {a}}, uq_intro 28. 30. 1 ⊢ power {a} = {∅, {a}}, ext 29. power_sg. ⊢ set a → power {a} = {∅, {a}}, subj_intro 30.
Dependencies
The given proof depends on eight axioms:
comp, efq, eq_refl, eq_subst, ext, infinity, lem, pairing.