Proof 01. 1 ⊢ set x, hypo. 02. 2 ⊢ x ⊆ y, hypo. 03. 1, 2 ⊢ x ∈ {x | x ⊆ y}, comp_intro 1 2. 04. ⊢ power y = {x | x ⊆ y}, power_eq. 05. 1, 2 ⊢ x ∈ power y, eq_subst_rev 4 3, P u ↔ x ∈ u. power_intro. ⊢ set x → x ⊆ y → x ∈ power y, subj_intro_ii 5.
Dependencies
The given proof depends on three axioms:
comp, eq_refl, eq_subst.