Proof 01. 1 ⊢ set a, hypo. 02. 2 ⊢ x ⊆ {a}, hypo. 03. ⊢ a ∈ x ∨ ¬a ∈ x, lem. 04. 4 ⊢ a ∈ x, hypo. 05. 5 ⊢ u ∈ {a}, hypo. 06. 1, 5 ⊢ u = a, sg_elim 1 5. 07. 1, 4, 5 ⊢ u ∈ x, eq_subst_rev 6 4, P u ↔ u ∈ x. 08. 1, 4 ⊢ u ∈ {a} → u ∈ x, subj_intro 7. 09. 1, 4 ⊢ ∀u. u ∈ {a} → u ∈ x, uq_intro 8. 10. 1, 4 ⊢ {a} ⊆ x, incl_intro 9. 11. 1, 2, 4 ⊢ x = {a}, incl_antisym 2 10. 12. 1, 2, 4 ⊢ x = ∅ ∨ x = {a}, disj_intror 11. 13. 13 ⊢ ¬a ∈ x, hypo. 14. 14 ⊢ u ∈ x, hypo. 15. 2, 14 ⊢ u ∈ {a}, incl_elim 2 14. 16. 1, 2, 14 ⊢ u = a, sg_elim 1 15. 17. 1, 2, 14 ⊢ a ∈ x, eq_subst 16 14, P u ↔ u ∈ x. 18. 1, 2, 13, 14 ⊢ ⊥, neg_elim 13 17. 19. 1, 2, 13, 14 ⊢ u ∈ ∅, efq 18. 20. 1, 2, 13 ⊢ u ∈ x → u ∈ ∅, subj_intro 19. 21. 1, 2, 13 ⊢ ∀u. u ∈ x → u ∈ ∅, uq_intro 20. 22. 1, 2, 13 ⊢ x ⊆ ∅, incl_intro 21. 23. ⊢ ∅ ⊆ x, empty_set_is_least. 24. 1, 2, 13 ⊢ x = ∅, incl_antisym 22 23. 25. 1, 2, 13 ⊢ x = ∅ ∨ x = {a}, disj_introl 24. 26. 1, 2 ⊢ x = ∅ ∨ x = {a}, disj_elim 3 12 25. subsets_of_sg. ⊢ set a → x ⊆ {a} → x = ∅ ∨ x = {a}, subj_intro_ii 26.
Dependencies
The given proof depends on six axioms:
comp, efq, eq_refl, eq_subst, ext, lem.