Proof 01. 1 ⊢ a ∈ ℝ, hypo. 02. 2 ⊢ ¬a = 0, hypo. 03. ⊢ a/a = a⋅(/a), rdiv_eq. 04. 1, 2 ⊢ a⋅(/a) = 1, rmul_inv 1 2. 05. 1, 2 ⊢ a/a = 1, eq_trans 3 4. rdiv_self. ⊢ a ∈ ℝ → ¬a = 0 → a/a = 1, subj_intro_ii 5.
Dependencies
The given proof depends on three axioms:
eq_refl, eq_subst, rmul_inv.