Theorem intersection_distl

Theorem. intersection_distl
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
Proof
01. 1 ⊢ x ∈ A ∩ (B ∪ C), hypo.
02. 1 ⊢ x ∈ A, intersection_eliml 1.
03. 1 ⊢ x ∈ B ∪ C, intersection_elimr 1.
04. 1 ⊢ x ∈ B ∨ x ∈ C, union_elim 3.
05. 5 ⊢ x ∈ B, hypo.
06. 1, 5 ⊢ x ∈ A ∩ B, intersection_intro 2 5.
07. 1, 5 ⊢ x ∈ (A ∩ B) ∪ (A ∩ C), union_introl 6.
08. 8 ⊢ x ∈ C, hypo.
09. 1, 8 ⊢ x ∈ A ∩ C, intersection_intro 2 8.
10. 1, 8 ⊢ x ∈ (A ∩ B) ∪ (A ∩ C), union_intror 9.
11. 1 ⊢ x ∈ (A ∩ B) ∪ (A ∩ C), disj_elim 4 7 10.
12. ⊢ x ∈ A ∩ (B ∪ C) → x ∈ (A ∩ B) ∪ (A ∩ C), subj_intro 11.
13. 13 ⊢ x ∈ (A ∩ B) ∪ (A ∩ C), hypo.
14. 13 ⊢ x ∈ A ∩ B ∨ x ∈ A ∩ C, union_elim 13.
15. 15 ⊢ x ∈ A ∩ B, hypo.
16. 15 ⊢ x ∈ A, intersection_eliml 15.
17. 15 ⊢ x ∈ B, intersection_elimr 15.
18. 15 ⊢ x ∈ B ∪ C, union_introl 17.
19. 15 ⊢ x ∈ A ∩ (B ∪ C), intersection_intro 16 18.
20. 20 ⊢ x ∈ A ∩ C, hypo.
21. 20 ⊢ x ∈ A, intersection_eliml 20.
22. 20 ⊢ x ∈ C, intersection_elimr 20.
23. 20 ⊢ x ∈ B ∪ C, union_intror 22.
24. 20 ⊢ x ∈ A ∩ (B ∪ C), intersection_intro 21 23.
25. 13 ⊢ x ∈ A ∩ (B ∪ C), disj_elim 14 19 24.
26. ⊢ x ∈ (A ∩ B) ∪ (A ∩ C) → x ∈ A ∩ (B ∪ C), subj_intro 25.
27. ⊢ x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C), bij_intro 12 26.
28. ⊢ ∀x. x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C), uq_intro 27.
intersection_distl. ⊢ A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C), ext 28.

Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, ext.