Theorem non_empty

Theorem. non_empty
¬A = ∅ → ∃x. x ∈ A
Proof
01. 1 ⊢ ¬A = ∅, hypo.
02. 2 ⊢ ¬∃x. x ∈ A, hypo.
03. 2 ⊢ ∀x. ¬x ∈ A, neg_ex 2.
04. 2 ⊢ A = ∅, set_with_no_elements 3.
05. 1, 2 ⊢ ⊥, neg_elim 1 4.
06. 1 ⊢ ¬¬∃x. x ∈ A, neg_intro 5.
07. 1 ⊢ ∃x. x ∈ A, dne 6.
non_empty. ⊢ ¬A = ∅ → ∃x. x ∈ A, subj_intro 7.

Dependencies
The given proof depends on six axioms:
comp, efq, eq_refl, eq_subst, ext, lem.