Proof 01. 1 ⊢ ∀x. ¬x ∈ A, hypo. 02. 1 ⊢ ¬x ∈ A, uq_elim 1. 03. 3 ⊢ x ∈ A, hypo. 04. 1, 3 ⊢ ⊥, neg_elim 2 3. 05. 3 ⊢ set x, set_intro 3. 06. 1, 3 ⊢ x ∈ {x | ⊥}, comp_intro 5 4. 07. 1, 3 ⊢ x ∈ ∅, eq_subst_rev empty_set_eq 6, P u ↔ x ∈ u. 08. 1 ⊢ x ∈ A → x ∈ ∅, subj_intro 7. 09. 1 ⊢ ∀x. x ∈ A → x ∈ ∅, uq_intro 8. 10. 1 ⊢ A ⊆ ∅, incl_intro 9. 11. ⊢ ∅ ⊆ A, empty_set_is_least. 12. 1 ⊢ A = ∅, incl_antisym 10 11. set_with_no_elements. ⊢ (∀x. ¬x ∈ A) → A = ∅, subj_intro 12.
Dependencies
The given proof depends on five axioms:
comp, efq, eq_refl, eq_subst, ext.