Proof 01. 1 ⊢ univ U, hypo. 02. 2 ⊢ x ∈ U, hypo. 03. 1, 2 ⊢ power x ∈ U, univ_closed_power 1 2. 04. ⊢ U ∩ power x ⊆ power x, intersection_incl_right. 05. 1, 2 ⊢ U ∩ power x ∈ U, univ_closed_subset 1 4 3. truncated_power_closed. ⊢ univ U → x ∈ U → U ∩ power x ∈ U, subj_intro_ii 5.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, subset.