Proof 01. 1 ⊢ univ U, hypo. 02. 2 ⊢ y ⊆ x, hypo. 03. 3 ⊢ x ∈ U, hypo. 04. 1, 3 ⊢ power x ∈ U, univ_closed_power 1 3. 05. 1, 3 ⊢ power x ⊆ U, univ_trans 1 4. 06. 3 ⊢ set x, set_intro 3. 07. 2, 3 ⊢ set y, subset 2 6. 08. 2, 3 ⊢ y ∈ power x, power_intro 7 2. 09. 1, 2, 3 ⊢ y ∈ U, incl_elim 5 8. univ_closed_subset. ⊢ univ U → y ⊆ x → x ∈ U → y ∈ U, subj_intro_iii 9.
Dependencies
The given proof depends on four axioms:
comp, eq_refl, eq_subst, subset.