Theorem univ_trans

Theorem. univ_trans
univ U → x ∈ U → x ⊆ U
Proof
01. 1 ⊢ univ U, hypo.
02. 1 ⊢ (∀x. x ∈ U → x ⊆ U), lsubj_conj_elimllr univ_equi 1.
03. 1 ⊢ x ∈ U → x ⊆ U, uq_elim 2.
univ_trans. ⊢ univ U → x ∈ U → x ⊆ U, subj_intro 3.