Theorem intersection_incl_right

Theorem. intersection_incl_right
A ∩ B ⊆ B
Proof
01. 1 ⊢ x ∈ A ∩ B, hypo.
02. 1 ⊢ x ∈ A ∧ x ∈ B, intersection_elim 1.
03. 1 ⊢ x ∈ B, conj_elimr 2.
04. ⊢ x ∈ A ∩ B → x ∈ B, subj_intro 3.
05. ⊢ ∀x. x ∈ A ∩ B → x ∈ B, uq_intro 4.
intersection_incl_right. ⊢ A ∩ B ⊆ B, incl_intro 5.

Dependencies
The given proof depends on two axioms:
comp, eq_subst.