Proof 01. ⊢ ∃f. choice_function f ∧ dom f = UnivCl \ {∅}, choice. 02. 2 ⊢ choice_function f ∧ dom f = UnivCl \ {∅}, hypo. 03. 2 ⊢ choice_function f, conj_eliml 2. 04. 2 ⊢ dom f = UnivCl \ {∅}, conj_elimr 2. 05. 2 ⊢ choice_function (restr f (A \ {∅})), restr_is_choice_fn 3. 06. ⊢ dom (restr f (A \ {∅})) = dom f ∩ (A \ {∅}), dom_restr. 07. 2 ⊢ dom f ∩ (A \ {∅}) = (UnivCl \ {∅}) ∩ (A \ {∅}), f_equal 4, f x = x ∩ (A \ {∅}). 08. ⊢ UnivCl ∩ A = A, intersection_neutl. 09. ⊢ A = UnivCl ∩ A, eq_symm 8. 10. ⊢ A \ {∅} = (UnivCl ∩ A) \ {∅}, f_equal 9, f x = x \ {∅}. 11. ⊢ (UnivCl ∩ A) \ {∅} = (UnivCl \ {∅}) ∩ (A \ {∅}), diff_dist_inter. 12. ⊢ A \ {∅} = (UnivCl \ {∅}) ∩ (A \ {∅}), eq_trans 10 11. 13. ⊢ (UnivCl \ {∅}) ∩ (A \ {∅}) = A \ {∅}, eq_symm 12. 14. 2 ⊢ dom f ∩ (A \ {∅}) = A \ {∅}, eq_trans 7 13. 15. 2 ⊢ dom (restr f (A \ {∅})) = A \ {∅}, eq_trans 6 14. 16. 2 ⊢ choice_function (restr f (A \ {∅})) ∧ dom (restr f (A \ {∅})) = A \ {∅}, conj_intro 5 15. 17. 2 ⊢ ∃f. choice_function f ∧ dom f = A \ {∅}, ex_intro 16. choice_on_class. ⊢ ∃f. choice_function f ∧ dom f = A \ {∅}, ex_elim 1 17.
Dependencies
The given proof depends on 10 axioms:
choice, comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.