Theorem restr_is_choice_fn

Theorem. restr_is_choice_fn
choice_function f → choice_function (restr f A)
Proof
01. 1 ⊢ choice_function f, hypo.
02. 1 ⊢ function f ∧ ∀x. x ∈ dom f → app f x ∈ x,
  lsubj_elim choice_function_equi 1.
03. 1 ⊢ function f, conj_eliml 2.
04. 1 ⊢ function (restr f A), restr_is_function 3.
06. 1 ⊢ ∀x. x ∈ dom f → app f x ∈ x, conj_elimr 2.
07. 7 ⊢ x ∈ dom (restr f A), hypo.
08. ⊢ dom (restr f A) = dom f ∩ A, dom_restr.
09. 7 ⊢ x ∈ dom f ∩ A, eq_subst 8 7,  P u ↔ x ∈ u.
10. 7 ⊢ x ∈ dom f, intersection_eliml 9.
11. 1, 7 ⊢ app f x ∈ x, uq_bounded_elim 6 10.
12. 7 ⊢ x ∈ A, intersection_elimr 9.
13. 1, 7 ⊢ app f x = app (restr f A) x, fn_app_restr 3 10 12.
14. 1, 7 ⊢ app (restr f A) x ∈ x, eq_subst 13 11, P u ↔ u ∈ x.
15. 1 ⊢ x ∈ dom (restr f A) → app (restr f A) x ∈ x, subj_intro 14.
16. 1 ⊢ ∀x. x ∈ dom (restr f A) → app (restr f A) x ∈ x, uq_intro 15.
17. 1 ⊢ choice_function (restr f A), choice_function_intro 4 16.
restr_is_choice_fn. ⊢ choice_function f →
  choice_function (restr f A), subj_intro 17.

Dependencies
The given proof depends on nine axioms:
comp, efq, eq_refl, eq_subst, ext, lem, pairing, subset, union.