Theorem choice_function_intro

Theorem. choice_function_intro
function f → (∀x. x ∈ dom f → app f x ∈ x) → choice_function f
Proof
01. 1 ⊢ function f, hypo.
02. 2 ⊢ ∀x. x ∈ dom f → app f x ∈ x, hypo.
03. 1, 2 ⊢ function f ∧ ∀x. x ∈ dom f → app f x ∈ x, conj_intro 1 2.
04. 1, 2 ⊢ choice_function f, rsubj_elim choice_function_equi 3.
choice_function_intro. ⊢ function f →
  (∀x. x ∈ dom f → app f x ∈ x) →
  choice_function f, subj_intro_ii 4.